
Gurobi Guidelines for Numerical Issues

Numerical instability is a generic label often applied to situations where solving an optimization
model produces results that are erratic, inconsistent, or unexpected, or when the underlying algo-
rithms exhibit poor performance or are unable to converge. There are many potential causes of
this behavior; however, most can be grouped into four categories:

• Rounding coefficients while building the model.

• Limitations of floating-point arithmetic.

• Unrealistic expectations about achievable precision.

• Ill conditioning, or geometry-induced issues.

This section explains these issues and how they affect both performance and solution quality.
We also provide some general rules and some advanced techniques to help avoid them. Although
we will treat each of these four sources separately, it is important to remember that their effects
often feed off of each other. We also provide tips on how to diagnose numerical instability in your
models.

Finally, we discuss the Gurobi parameters that can be modified to improve solution accuracy.
We should stress now, however, that the best way to improve numerical behavior and performance
is to reformulate your model. Parameters can help to manage the effects of numerical issues, but
there are limits to what they can do, and they typically come with a substantial performance cost.

24.1 Avoid rounding of input
A common source of numerical issues is numerical rounding in the numbers that are used to
represent constraint matrix coefficients. To illustrate the issue, consider the following example:

x− 6y = 1
0.333x− 2y = .333

It may be tempting to say that the two equations are equivalent, but adding both to a model will
lead to an incorrect result. This is an important point for our users: Gurobi will always trust the
input numbers that they provide, and will never change them unless the change can be shown to
not affect the solution.

So, with this in mind, during presolve Gurobi can use the second constraint to determine:

y := 0.1665x− 0.1665

When substituted into the first constraint, this yields

x− 6 · (0.1665x− 0.1665) = 1
⇔ 0.001x = 0.001

752

and thus x = 1, y = 0 as the only solution.
If user had provided these two equations instead:

x− 6y = 1
0.3333333333333333x− 2y = 0.3333333333333333

this would give:
y := 0.1666666666666667x− 0.1666666666666667

which yields:

x− 6 · (0.1666666666666667x− 0.1666666666666667) = 1
⇔ 2 · 10−16x+ 1 + 2 · 10−16 ≈ 1

Even with a very small threshold for treating a coefficient as zero, the result here is that the first
constraint is truly redundant. Any solution with x = 6y + 1 would be accepted as feasible.

The main point is that constraints that are exactly parallel, or linearly dependant (within
double-precision floating-point and small tolerances) are harmless, but constraints that are almost
parallel to each other produce tiny coefficients in the linear system solves and in preprocessing,
which can wreak havoc on the solution process. In the next section, we expand on the limits
double-precision floating-point numbers, and in particular why 1 ≈ 1 + 2 · 10−16.

24.2 Real numbers are not real
To say that real numbers aren’t real is not just a play on words, but a computational reality. Let’s
do a simple experiment: try the following in your favorite number-crunching tool. In Excel:

=IF(1+1E-016 = 1,1,0)

will print 1. In Python:
>>> 1 == 1+1e -16
True

In C, the code
#include <stdio.h>
int main(void)
{

if (1+1e -16 == 1) printf ("True\n");
else printf ("False\n");
return 0;

}

will print True. In R:
> 1 == 1+1e -16
[1] TRUE

Note that this behavior is not restricted to small numbers; it also happens with larger numbers.
For example:
>>> 1+1 e16 == 1e16
True

753

This shows that the precision of the result depends on the relative scale of the involved numbers.
Although this behavior is typical, there are some exceptions. One is the GNU-bc command line

tool:

> bc
1.0 == 1.0+10^(-16)
1
scale=20
1.0 == 1.0+10^(-16)
0
1.0 == 1.0+10^(-21)
1

When we set the scale parameter to 20, the code is able to recognize that the numbers are
different. This just shifts the bar, though; bc still fails to recognize the difference between the
last two numbers. Another library that allows for extended, or even unlimited (up to memory)
precision is the GNU Multiple Precision Arithmetic Library, but its details are beyond the scope
of this document.

The reason for these failures is that computers must store numbers as a sequence of bits, and
most common implementations adhere to the IEEE 754 standard. In particular, IEEE-754 sets the
standard for double-precision format. This standard is so pervasive that almost all computers have
specialized hardware to improve performance for operations on numbers represented as such. One
consequence is that mathematical operations on alternative extended number representations tend
to be significantly slower than operations on numbers represented following the IEEE 754 standard.
Degradation of 10X or even 100X are common.

Due to the performance obtained from hardware support for double-precision arithmetic, Gurobi
relies on this standard (as does most software). However, this speed comes at a cost: computed
results often differ from what mathematics may dictate. For example, the associative property (a +
(b + c) = (a + b) + c) is a fundamental property of arithmetic, but double-precision arithmetic
gives (in Python):
>>> (1+1e -16)+1e -16 == 1 + (1e -16 + 1e -16)
False

Furthermore, many common numbers (e.g. 0.1) cannot be represented exactly.
Consequently, simple questions like whether two numbers are equal, or whether a number is

equal zero, or whether a number is integral, can be quite complicated when using floating-point
arithmetic.

24.3 Tolerances and user-scaling
Gurobi will solve the model as defined by the user. However, when evaluating a candidate solution
for feasibility, in order to account for possible round-off errors in the floating-point evaluations, we
must allow for some tolerances.

To be more precise, satisfying Optimality Conditions requires us to test at least the following
three criteria:

IntFeasTol: Integrality of solutions, i.e., whether a integer variable x takes an integer value or not.
More precisely, x will be considered integral if abs(x - floor(x + 0.5)) ≤ IntFeasTol.

754

https://www.gnu.org/software/bc/manual/html_mono/bc.html
https://gmplib.org
https://en.wikipedia.org/wiki/IEEE_754

FeasibilityTol: Feasibility of primal constraints, i.e., whether a ·x ≤ b holds for the primal solu-
tion. More precisely, a ·x ≤ b will be considered to hold if (a * x) - b ≤ FeasibilityTol.

OptimalityTol: Feasibility of dual constraints, i.e., whether a · y ≤ c holds for the dual solution.
More precisely, a · y ≤ c will be considered to hold if (a * y) - c ≤ OptimalityTol.

Note that these tolerances are absolute; they do not depend on the scale of the quantities involved
in the computation. This means that when formulating a problem, these tolerances should be taken
into account, specially to select the units in which variables and constraints will be expressed.

It is very important to note that the usage of these tolerances implicitly defines a gray zone in
the search space in which solutions that are very slightly infeasible can still be accepted as feasible.
However, the solver will not explicitly search for such solutions.

For this reason, it is actually possible (although highly unlikely for well-posed problems) for a
model to be reported as being both feasible and infeasible (in the sense stated above). This can
occur if the model is infeasible in exact arithmetic, but there exists a solution that is feasible within
the solver tolerances. For instance, consider:

min 0
s.t. x ≤ 0

x ≥ 10−10

Gurobi tolerances and the limitations of double-precision arithmetic
The default values for these primal and dual feasibility tolerances are 10−6, and the default for the
integrality tolerance is 10−5. If you choose the range for your inequalities and variables correctly,
you can typically ignore tolerance issues entirely.

To give an example, if your constraint right-hand side is on the order of 103, then relative
numeric errors from computations involving the constraint (if any) are likely to be less than 10−9,
i.e., less than one in a billion. This is usually far more accurate than the accuracy of input data,
or even of what can be measured in practice.

However, if you define a variable x ∈ [−10−6, 10−6], then relative numeric error may be as big
as 50% of the variable range.

If, on the other hand, you have a variable x ∈ [−1010, 1010], and you are using default primal
feasibility tolerances; then what you are really asking is for the relative numeric error (if any) to
be less than 10−16. However, this is beyond the limits of comparison for double-precision numbers.
This implies that you are not allowing any round-off error at all when testing feasible solutions for
this particular variable. And although this might sound as a good idea, in fact, it is really bad, as
any round-off computation may result in your truly optimal solution being rejected as infeasible.

Why scaling and geometry is relevant
This section provides a simple example of how scaling problems can slow down problem solving
and, in extreme cases, result in unexpected answers. Consider the problem:

(P) max{cx : Ax = b, l ≤ x ≤ u}

and let D be a diagonal matrix where Dii > 0, ∀i. In theory, solving (P) should be equivalent to
solving the related problem (PD):

(PD) max{cDx′ : ADx′ = b,D−1l ≤ x′ ≤ D−1u}

755

However, in practice, the two models behave very differently. To demonstrate this, we use a simple
script rescale.py that randomly rescales the columns of the model. Let’s consider the impact
of rescaling on the problem pilotnov.mps.bz2. Solving the original problem gives the following
output:

Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Coefficient statistics:

Matrix range [3e-06, 9e+06]
Objective range [3e-03, 1e+00]
Bounds range [6e-06, 7e+04]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 254 rows and 513 columns
Presolve time: 0.01s
Presolved: 721 rows, 1659 columns, 11454 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -3.2008682e+05 1.435603e+05 0.000000e+00 0s

1137 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1137 iterations and 0.13 seconds
Optimal objective -4.497276188e+03
Kappa: 1.949838e+06

Note the log message regarding the matrix coefficient range in the log (which in this case shows a
range of [3e-06, 9e+06]).

If we run rescale.py -f pilotnov.mps.bz2 -s 1e3 (randomly rescaling columns up or down
by as much as 103), we obtain:

Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Coefficient statistics:

Matrix range [5e-09, 1e+10]
Objective range [2e-06, 1e+03]
Bounds range [5e-09, 6e+07]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 100 rows and 255 columns
Presolve time: 0.00s
Presolved: 875 rows, 1917 columns, 11899 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -6.2117921e+32 7.026405e+31 6.211792e+02 0s

Extra 2 simplex iterations after uncrush
1166 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1166 iterations and 0.15 seconds
Optimal objective -4.497276188e+03
Kappa: 2.341493e+18

This time, the optimization process takes a more iterations, and also, we get an extra warning:

756

Extra 2 simplex iterations after uncrush,

This indicates that extra simplex iterations were performed on the unpresolved model. Also, note
the very large value for Kappa; its meaning will be discussed in this section.

If we run rescale.py -f pilotnov.mps.bz2 -s 1e6, we obtain:

Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Coefficient statistics:

Matrix range [5e-12, 1e+13]
Objective range [2e-09, 1e+06]
Bounds range [5e-12, 5e+10]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 103 rows and 252 columns
Presolve time: 0.01s
Presolved: 872 rows, 1920 columns, 11900 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -6.4093202e+34 7.254491e+31 6.409320e+04 0s

Extra 151 simplex iterations after uncrush
1903 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1903 iterations and 0.23 seconds
Optimal objective -4.497276188e+03
Warning: unscaled primal violation = 0.171778 and residual = 0.00142752
Kappa: 5.729068e+12

Now we get a much larger number of extra simplex iterations, and more troublingly, we get a
warning about the quality of the resulting solution:

Warning: unscaled primal violation = 0.171778 and residual = 0.00142752,

This message indicates that the solver had trouble finding a solution that satisfies the default
tolerances.

Finally, if we run rescale.py -f pilotnov.mps.bz2 -s 1e8, we obtain:

Optimize a model with 975 rows, 2172 columns and 13054 nonzeros
Coefficient statistics:

Matrix range [3e-13, 7e+14]
Objective range [2e-11, 1e+08]
Bounds range [5e-14, 1e+13]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 79 rows and 242 columns
Presolve time: 0.00s

Solved in 0 iterations and 0.00 seconds
Infeasible model

757

In this case, the optimization run terminates almost instantly, but with the unexpected Infeasible
result.

As you can see, as we performed larger and larger rescalings, we continued to obtain the same
optimal value, but there were clear signs that the solver struggled. We see warning messages, as well
increasing iteration counts, runtimes, and Kappa values. However, once we pass a certain rescaling
value, the solver is no longer able to solve the model and instead reports that it is Infeasible.

Note that this is not a bug in Gurobi. It has to do with changing the meaning of numbers
depending on their range, the use of fixed tolerances, and in the changing geometry of the problem
due to scaling. We will discuss this topic further in a later section.

Recommended ranges for variables and constraints

Keeping the lessons of the previous section in mind, we recommended that right-hand sides of
inequalities representing physical quantities (even budgets) should be scaled so that they are on
the order of 104 or less. The same applies to variable domains, as variable bounds are again linear
constraints.

In the case of objective functions, we recommend that good solutions should have an optimal
value that is less than 104, and ideally also above one (unless the objective coefficients are all zero).
This is because the OptimalityTol is used to ensure that reduced cost are close enough to zero.
If coefficients are too large, we again face difficulties in determining whether an LP solution truly
satisfies the optimality conditions or not. On the other hand, if the coefficients are too small, then
it may be too easy to satisfy the feasibility conditions.

The coefficients of the constraint matrix are actually more important than the right-hand side
values, variable bounds, and objective coefficients mentioned here. We’ll discuss those shortly.

Improving ranges for variables and constraints

There are three common ways to improve ranges for objectives, constraints and variables:

• Use problem-specific information to tighten bounds:
Although presolve, and, in particular, bound strengthening, is quite good at deriving implied
variables bounds, it may not have access to all of the information known to the modeler.
Incorporating tighter bounds directly into the model can not only improve the numerical
behavior, but it can also speed up the optimization process.

• Choose the right units to express your variables and constraints:
When defining your variables and constraints, it is important to choose units that are con-
sistent with tolerances. To give an example, a constraint with a 1010 right-hand side value
is not going to work well with the default 10−6 feasibility tolerance. By changing the units
(e.g., replacing pounds with tons, or dollars with millions of dollars, or ...), it is often possible
to significantly improve the numerics of the problems.

• Disaggregate multiple objectives:
A common source for very large range of objective coefficients is the practice of modeling
hierarchical objectives as an aggregation of objective functions with large multipliers. For
example, if the user wants to optimize a problem P with objective function f1(x) and then,

758

subject to f1(x) being optimal, optimize f2(x), a common trick is to use as surrogate objective
f̄(x) = Mf1(x) + f2(x) where M is a large constant. When you combine a large M with
a relatively tight dual feasibility tolerance, it becomes much harder for the solver to find
solutions that achieve dual feasibility. We recommend that you either use as small a constant
M as possible or reformulate your model using a hierarchical objective (which is made easier
by our multi-objective optimization features).

These techniques are usually sufficient to eliminate the problems that arise from bad scaling.

Advanced user scaling
In the previous sections, we presented some simple strategies to limit the ranges of variable bounds,
constraint right-hand sides, objective values, and constraint matrix coefficients. However, it could
happen that by scaling constraints or variables, some constraint coefficients become too small. Note
that Gurobi will treat any constraint coefficient with absolute value under 10−13 as zero. Consider
the following example:

10−7x+ 10y ≤ 10
x+ 104z ≤ 103

x, y, z ≥ 0,

In this example, the matrix coefficients range in [10−7, 104]. If we multiply all x coefficients by 105,
and divide all coefficients in the second constraint by 103, we obtain:

10−2x′ + y ≤ 10
102x′ + 10z ≤ 1

x′, y, z ≥ 0,

where x = 105x′. The resulting matrix coefficients have a range in [10−2, 102]. Essentially the trick
is to simultaneously scale a column and a row to achieve a smaller range in the coefficient matrix.

We recommend that you scale the matrix coefficients so that their range is contained in six
orders of magnitude or less, and hopefully within [10−3, 106].

Avoid hiding large coefficients
As we said before, a typical recommendation for improving numerics is to limit the range of con-
straint matrix coefficients. The rationale behind this guideline is that terms to be added in a
linear expression should be of comparable magnitudes so that rounding errors are minimized. For
example:

x− 106y ≥ 0
y ∈ [0, 10]

is usually considered a potential source of numerical instabilities due to the wide range of the
coefficients in the constraint. However, it is easy to implement a simple (but useless) alternative:

x− 10y1 ≥ 0

759

y1 − 10y2 = 0
y2 − 10y3 = 0
y3 − 10y4 = 0
y4 − 10y5 = 0
y5 − 10y = 0

y ∈ [0, 10]

This form certainly has nicer values in the matrix. However, the solution y = −10−6, x = −1
might still be considered feasible (within tolerances). A better alternative is to reformulate

x− 106y ≥ 0
y ∈ [0, 10]

as

x− 103y′ ≥ 0
y′ ∈ [0, 104]

where 10−3y′ = y. In this setting, the most negative values for x which might be considered
feasible would be −10−3, and for y it would be −10−9, which is a clear improvement over the
original situation.

Dealing with big-M constraints
Big-M constraints are a regular source of instability for optimization problems. They are so named
because they typically involve a large coefficient M that is chosen to be larger than any reasonable
value that a continuous variable or expression may take. Here’s a simple example:

x ≤ 106y

x ≥ 0
y ∈ {0, 1},

Big-M constraints are typically used to propagate the implications of a binary, on-off decision to
a continuous variable. For example, a big-M might be used to enforce the condition that an edge
can only admit flow if you pay the fixed charge associated with opening the edge, or a facility can
only produce products if you build it. In our example, note that the y = 0.0000099999 satisfies the
default integrality tolerance (IntFeasTol=10−5), which allows x to take a value of 9.999. In other
words, x can take a positive value without incurring an expensive fixed charge on y, which subverts
the intent of only allowing a non-zero value for x when the binary variable y has the value of 1.
You can reduce the effect of this behavior by adjusting the IntFeasTol parameter, but you can’t
avoid it entirely.

However, if the modeler has additional information that the x variable will never be larger than
103, then you could reformulate the earlier constraint as:

x ≤ 103y

x ≥ 0
y ∈ {0, 1}

760

And now, y = 0.0000099999 would only allow for x ≤ 0.01.
For cases when it is not possible to either rescale variable x or tighten its bounds, an SOS

constraints or an indicator constraint (of the form y = 0 ⇒ x = 0) may produce more accurate
solutions, but often at the expense of additional processing time.

24.4 Does my model have numerical issues?
You can follow these steps to help determine whether a model is experiencing numerical issues:

1. Isolate the model for testing by exporting a model file and a parameter file. The easiest way
to do this is to create a gurobi.env file in your working directory that contains the following
line:

Record 1

Then, run your Gurobi program, which will produce gurobi.rec files. Afterwards, you can
replay this recording file using gurobi_cl.

2. Using the Gurobi Interactive shell, run some simple Python code to read the model that the
replay produces, and print the summary statistics:
m = read(’gurobi .rew ’)
m. printStats ()

The output will look like:

Statistics for model (null) :
Linear constraint matrix : 25050 Constrs, 15820 Vars, 94874 NZs
Variable types : 14836 Continuous, 984 Integer
Matrix coefficient range : [0.00099, 6e+06]
Objective coefficient range : [0.2, 65]
Variable bound range : [1, 5e+07]
RHS coefficient range : [1, 5e+07]

The range of numerical coefficients is one indication of potential numerical issues. As a very
rough guideline, the ratio of the largest to the smallest coefficient should be less than 109;
smaller is better.

In this example, the matrix range is

6 · 106/0.00099 = 6.0606 · 109.

3. If possible, re-solve the model using the same parameters and review the logs. With the
Python shell, use code like the following:
m.read(’gurobi .prm ’)
m. optimize ()

Here are some examples of warning messages that suggest numerical issues:

761

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Warning: Markowitz tolerance tightened to 0.5
Warning: switch to quad precision
Numeric error
Numerical trouble encountered
Restart crossover...
Sub-optimal termination
Warning: ... variables dropped from basis
Warning: unscaled primal violation = ... and residual = ...
Warning: unscaled dual violation = ... and residual = ...

4. When the optimize function completes, print solution statistics. With the Python shell, use
code like the following:

m. printQuality ()

which provides a summary of solution quality:

Solution quality statistics for model Unnamed :
Maximum violation:

Bound : 2.98023224e-08 (X234)
Constraint : 9.30786133e-04 (C5)
Integrality : 0.00000000e+00

Violations that are larger than the tolerances are another indication of numerical issues. Also,
for a pure LP (without integer variables), print the condition number via the following Python
command:

m. KappaExact

The condition number measures the potential for error in linear calculations; a large condition
number, such as 1012, is another indication of possible numerical issues, see this section for
more details.

5. If changing parameters (e.g., Method or Seed) leads to a different optimization status (e.g.,
Infeasible instead of optimal), or if the optimal objective values changes, this is usually
a sign of numerical issues. To further assess this you can tighten tolerances (to the order of
10−8 or even 10−9), and see if the behavior of the solver becomes consistent again. Note that
tightening tolerances usually comes at the price of more computing time, and should not be
considered as a solution for numerical issues.

24.5 Solver parameters to manage numerical issues
Reformulating a model may not always be possible, or it may not completely resolve numerical
issues. When you must solve a model that has numerical issues, some Gurobi parameters can be
helpful. We discuss these now, in descending order of relevance.

762

Presolve

Gurobi presolve algorithms are designed to make a model smaller and easier to solve. However,
in some cases, presolve can contribute to numerical issues. The following Python code can help
you determine if this is happening. First, read the model file and print summary statistics for the
presolved model:
m = read(’gurobi .rew ’)
p = m. presolve ()
p. printStats ()

If the numerical range looks much worse than the original model, try the parameter Aggregate=0:
m.reset ()
m. Params . Aggregate = 0
p = m. presolve ()
p. printStats ()

If the resulting model is still numerically problematic, you may need to disable presolve completely
using the parameter Presolve=0; try the steps above using
m.reset ()
m. Params . Presolve = 0
p = m. presolve ()
p. printStats ()

If the statistics look better with Aggregate=0 or Presolve=0, you should further test these
parameters. For a continuous (LP) model, you can test them directly. For a MIP, you should
compare the LP relaxation with and without these parameters. The following Python commands
create three LP relaxations: the model without presolve, the model with presolve, and the model
with Aggregate=0:
m = read(’gurobi .rew ’)
r = m.relax ()
r.write(’gurobi .relax -nopre.rew ’)
p = m. presolve ()
r = p.relax ()
r.write(’gurobi .relax -pre.rew ’)
m.reset ()
m. Params . Aggregate = 0
p = m. presolve ()
r = p.relax ()
r.write(’gurobi .relax -agg0.rew ’)

With these three files, use the techniques mentioned earlier to determine if Presolve=0 or Aggregate=0
improves the numerics of the LP relaxation.

Finally, if Aggregate=0 helps numerics but makes the model too slow, try AggFill=0 instead.

Choosing the right algorithm

Gurobi Optimizer provides two main algorithms to solve continuous models and the continuous
relaxations of mixed-integer models: barrier and simplex.

The barrier algorithm is usually fastest for large, difficult models. However, it is also more
numerically sensitive. And even when the barrier algorithm converges, the crossover algorithm
that usually follows can stall due to numerical issues.

763

The simplex method is often a good alternative, since it is generally less sensitive to numerical
issues. To use dual simplex or primal simplex, set the Method parameter to 1 or 0, respectively.

Note that, in many optimization applications, not all problem instances have numerical issues.
Thus, choosing simplex exclusively may prevent you from taking advantage of the performance
advantages of the barrier algorithm on numerically well-behaved instances. In such cases, you
should use the concurrent optimizer, which uses multiple algorithms simultaneously and returns
the solution from the first one to finish. The concurrent optimizer is the default for LP models,
and can be selected for MIP by setting the Method parameter to 3 or 4.

For detailed control over the concurrent optimizer, you can create concurrent environments,
where you can set specific algorithmic parameters for each concurrent solve. For example, you can
create one concurrent environment with Method=0 and another with Method=1 to use primal and
dual simplex simultaneously. Finally, you can use concurrent optimization with multiple distinct
computers using distributed optimization. On a single computer, the different algorithms run on
multiple threads, each using different processor cores. With distributed optimization, independent
computers run the separate algorithms, which can be faster since the computers do not compete
for access to memory.

Making the algorithm less sensitive
When all else fails, try the following parameters to make the algorithms more robust:

ScaleFlag, ObjScale (All models): It is always best to reformulate a model yourself. However,
for cases when that is not possible, these two parameters provide some of the same benefits.
Set ScaleFlag=2 for aggressive scaling of the coefficient matrix. ObjScale rescales the ob-
jective row; a negative value will use the largest objective coefficient to choose the scaling.
For example, ObjScale=-0.5 will divide all objective coefficients by the square root of the
largest objective coefficient.

NumericFocus (All models): The NumericFocus parameter controls how the solver manages nu-
merical issues. Settings 1-3 increasingly shift the focus towards more care in numerical com-
putations, which can impact performance. The NumericFocus parameter employs a number
of strategies to improve numerical behavior, including the use of quad precision and a tighter
Markowitz tolerance. It is generally sufficient to try different values of NumericFocus. How-
ever, when NumericFocus helps numerics but makes everything much slower, you can try
setting Quad=1 and/or larger values of MarkowitzTol such as 0.1 or 0.5.

NormAdjust (Simplex): In some cases, the solver can be more robust with different values of the
simplex pricing norm. Try setting NormAdjust to 0, 1, 2 or 3.

BarHomogeneous (Barrier): For models that are infeasible or unbounded, the default barrier
algorithm may have numerical issues. Try setting BarHomogeneous=1.

CrossoverBasis (Barrier): Setting CrossoverBasis=1 takes more time but can be more robust
when creating the initial crossover basis.

GomoryPasses (MIP): In some MIP models, Gomory cuts can contribute to numerical issues. Set-
ting GomoryPasses=0 may help numerics, but it may make the MIP more difficult to solve.

764

Cuts (MIP): In some MIP models, various cuts can contribute to numerical issues. Setting Cuts=1
or Cuts=0 may help numerics, but it may make the MIP more difficult to solve.

Tolerance values (FeasibilityTol, OptimalityTol, IntFeasTol) are generally not helpful for
addressing numerical issues. Numerical issues are better handled through model model reformula-
tion.

24.6 Instability and the geometry of optimization problems
As we have seen, whenever we solve a problem numerically, we have to accept that the input we
provide and the output we obtain may differ from the theoretical or mathematical solution to the
given problem. For example, 0.1, in a computer, will be represented by a number that differs from
0.1 by about 10−17. Thus, a natural thing to worry about is if these small differences may induce
large differences in the computed solution.

This is the idea behind the notion of the Condition Number for a given problem. While it is
true that for most practical optimization problems, small perturbations in the input only induce
small perturbations in the final answer to the problem, there are some special situations where this
is not the case. These ill behaving problems are called Ill Conditioned or Numerically Unstable.

This sections aims to show, in the context of linear optimization problems, the most common
sources for this behavior, and also how to avoid the behavior altogether. We will review first the
problem of solving linear systems with unique solutions, and then move into the more central issue
of linear optimization problems, its geometric interpretation, and then describe some of the most
common bad cases. We then provide two thought experiments with interactive material to help
illustrate the concepts of this section. We conclude with some further thoughts on this topic.

Note that although the notion of the Condition Number has received a lot of attention from the
academic community, reviewing this literature is beyond the scope of this document. If you want to
start looking into this topic, a good entry point can be the Condition Number page at Wikipedia.

The case of linear systems:

Solving linear systems is a very common sub-routine in any MI(QC)P-solver, as we have to solve
many linear systems during the full execution of the algorithm.

So, consider that we have a linear system Ax = b with an unique solution (i.e. A is a square
matrix with full rank), and you want to evaluate how the solution to the system might change if
we perturb the right-hand side b. Since the system has a unique solution, we know that given b,
the solution will be A−1b, and if we perturb b with ε, the solution will be A−1(b + ε). A measure
for the relative change in the solution with respect to the relative change in the input would be the
ratio

η(b, ε) := ‖A−1b‖
‖A−1(b+ ε)‖

/
‖b‖
‖b+ ε‖

.

Note that the above definition is independent of the magnitudes of b and ε. From there, the worst
possible ratio would be the result of

κ(A) := max
b,ε

η(b, ε).

765

https://en.wikipedia.org/wiki/Condition_number

This quantity is known as the condition number of the matrix A. It is not hard to prove that

κ(A) = λmax
λmin

,

where λmax and λmin are the maximum and minimum, respectively, eigenvalues of A. Equivalently

κ(A) = ‖A‖
‖A−1‖

.

A common interpretation of κ(A) = 10k is that, when solving the system Ax = b, you may lose up
to k digits of accuracy in x from the accuracy you have in b.

The condition number for the optimal simplex basis in an LP is captured in the KappaExact
attribute. A very large κ value might be an indication that the result might be unstable.

When this is indeed the case, the best advice is to scale the constraint matrix coefficients so
that the resulting range of coefficients is small. This transformation will typically reduce the κ
value of the final basis; please refer to the Scaling section for a discussion on how to perform this
rescaling, and also for caveats on scaling in general.

The geometry of linear optimization problems

Before showing optimization models that exhibit bad behavior, we first need to understand the
geometry behind them. Consider a problem of the form

max cx
s.t. Ax ≤ b.

For example:

max x+ y ~c = (1, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Note that if we denote bt := (0, 1, 0, 1), then the problem can be stated as

max
x∈R2
{~cx : Ax ≤ b}.

The feasible region, direction of improvement ~c, and optimal solution x∗ can be depicted as

766

x

y ~c

A1·

A2·

A3· A4·

x∗

Note that whenever we move in the direction of ~c, the value ~cx increases. Furthermore, since we
can not move from x∗ to another feasible point with better objective value, we can conclude that
x∗ is indeed the optimal solution for the problem. Note that x∗ is a corner point of the feasible
region. This is not a coincidence; you will always find an optimal solution at a corner point if the
feasible region is bounded and ~c is not zero. If the objective is zero then all feasible solutions are
optimal; we will talk more about zero objectives and their implications later.

To understand how changes in the input data affect the feasible region and the optimal solution,
consider a small modification: b̃t = (ε, 1, 0, 1), ~̃c = (1+ε, 1), and Ã4· = (ε, 1). Then our optimization
problem would look like

x

y ~c ~̃c

A1·

A2·

A3· Ã4·
A4·

x̃∗x∗

Note that although we changed the right-hand side, this change had no effect in the optimal
solution to the problem, but it did change the feasible region by enlarging the bottom part of the
feasible area.

Changing the objective vector tilts the corresponding vector in the graphical representation.
This of course also changes the optimal objective value. Perturbing a constraint tilts the graphical

767

representation of the constraint. The change in A4· changes the primal solution itself. The amount
of tilting constraint undergoes depends on the relative value of the perturbation. For example,
although the constraint x ≤ 1 and the constraint 100x ≤ 100 induce the same feasible region, the
perturbation x+ εy ≤ 1 will induce more tilting that the perturbation 100x+ εy ≤ 100.

Multiple optimal solutions

A common misconception among beginners in optimization is the idea that optimization problems
really have just one solution. Surprisingly, this is typically not true. For many practical problems,
the objective (whether it is cost or revenue or ...) is dominated by a handful of variables, while most
variables are just there to ensure that the actual operation of the solution is possible. Consider a
staffing problem, for example, where cost is typically driven by the number of people who work on
a given day, not by the specific people.

These kind of situations naturally lead to problems similar to

max y ~c = (0, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Graphically this can be depicted as

x

y ~c

A1·

A2·

A3· A4·

x1 x2 x3

In this situation is clear that x1, x3, and all solutions lying on the line between these two points
are optimal. The simplex algorithm will return either x1 or x3 (and may switch if you change
parameters). The barrier algorithm (without crossover) will return x2. These solutions are all
correct; the problem as stated has no reason to prefer one over the other. If you do have a
preference, you’ll need to state it in your objective function.

768

Dealing with epsilon-optimal solutions
The previous section considered the case of multiple (true) optimal solutions. What happens when
we have several ε-optimal solutions? To be more specific, consider

max εx+ y ~c = (ε, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Graphically this can be depicted as

x

y ~co~c−ε ~cε

A1·

A2·

A3· A4·

x1 x2

If ε is zero, then we are in the situation described before. Note, however, that a small perturbation of
the objective vector may lead to either x1 or x2 being reported as optimal. And tolerances can play
a big role here. If ε is negative, for example, then x1 would be the mathematically optimal result,
but due to the optimality tolerance, simplex might conclude that x2 is optimal. More precisely, if ε
is less than the default optimality tolerance of 10−6, then simplex is free to declare either solution
optimal (within tolerances).

The above statement is true whenever the distance between x1 and x2 is not too large. To see
this, consider what happens when we change the right-hand side of A4· from 1 to 106. Then the
feasible region would then be a very long rectangular box, with vertices (0, 0), (0, 1), (106, 1) and
(106, 0). Perhaps somewhat surprisingly, if ε is below the dual tolerance, simplex may consider
(106, 1) optimal, even though its objective value is 1− 106ε, which can be very relevant in terms of
the final objective value.

Note that both situations share one ingredient: The objective function is (almost) parallel to
one of the sides of the feasible region. In the first case, this side is relatively short, and thus jumping
from x2 to x1 translate into a small change in objective value. In the second case, the side almost
parallel to the objective function is very long, and now the jump from x2 to x1 can have a significant
impact on the final objective function.

If you take out either of these two ingredients, namely the objective vector being almost parallel
to a constraint, or the edge induced by this nearly-parallel constraint being very long, then this

769

problem can not arise. For the reasons discussed at the beginning of this section, it is common for
the objective function to be close to parallel to one or more constraints. Thus, the best way to
avoid this situation is to avoid the second condition. The simplest way to do this is to ensure that
the ranges for your variables are not too large. Please refer to the Scaling section for guidance on
this.

Thin feasible regions

We now consider another extreme situation that can lead to unexpected results. Consider the
problem defined as

max y ~c = (0, 1)
s.t. −x+ εy ≤ 1 A1· = (−1, ε)

x+ εy ≤ 1 A2· = (1, ε)
−y ≤ 0 A3· = (0,−1)

and its graphical representation

x

~c

A1·

A2·

A3·

x∗

It is clear from the graphical representation that the optimal solution for the problem will be at
the intersection of constraints A1· with A2·; and if we do the algebra, we will get that x∗ = (0, 1

ε).
Also note that as you decrease ε the feasible region stretches upwards, leaving its base unchanged.
We will consider the case where ε is a very small, positive number (between 10−9 and 10−6).

If we perturb the right-hand side vector b from (1, 1) to (1 + δ, 1), the new solution will be
x̃∗ = (− δ

2 ,
2+δ
2ε). To assess the impact of this perturbation, we compute the L1 distance between

this modified solution and the previous solution, which is given by

‖x∗ − x̃∗‖1 = |δ|
2

+ |δ|
ε

This quantity can be either small or very large, depending on the relative magnitude between δ
and ε. If δ is much smaller than ε, then this quantity will be small. However, if δ is larger than or
even the same order of magnitude as ε, the opposite will be true. Very small perturbations in the
input data can lead to big changes in the optimal solution.

770

A similar issue arises if we perturb A1· to (−1, δ); the new optimal solution becomes x̃∗ =
(1 − 2ε

ε+δ ,
2
ε+δ). But now, if δ = ε/2, then the new solution for y will change from 1

ε to 4
3ε (a 33%

relative difference). Again, small changes in the input can produce big changes in the optimal
solution.

What is driving this bad behavior? The problem is that the optimal point is defined by two
constraints that are nearly parallel. The smaller ε is, the closer to parallel the are. When the
constraints are so close parallel, small changes in the slopes can lead to big movements in the point
where they intersect. Mathematically speaking:

lim
ε→0+

‖x∗‖ =∞

Note however that, if the original problem had an additional variable bound of the form y ≤ 104,
then neither of these bad behavior would have been possible. For any ε value smaller than 10−4,
the optimal point would be defined by the new constraint and one of the constraints A2· or A1·,
which would lead again to a well-behaved (i.e. stable) solutions. In summary, this sort of issue can
only arise when either the feasible region is either unbounded or very large. See the Scaling section
for further guidance on bounding the feasible region.

Optimizing over the circle:
Now we provide our first thought experiment: Consider the problem of optimizing a linear function
over the feasible region defined by the constraints

sin(2π i

106)x+ cos(2π i

106)y ≤ 1, ∀i ∈ {1, . . . , 106},

i.e. the feasible region is essentially a unit circle in R2. Note that for all objective functions,
the corresponding optimal point will be defined by two linear constraints that are very close to
be parallel. What will happen to the numerical solution to the problem? Can you guess? The
situation is depicted in the figure below:

~c

To perform the experiment, we execute the code circleOpt.py, where we randomly select an
objective vector, find the optimal solution to the resulting optimization problem, and compute
several relevant quantities:

771

• The worst distance between the reported primal solution, and the theoretical solution to the
problem of actually optimizing over a perfect circle, over all previous runs.

• The worst bound violation reported by Gurobi over all previous runs.

• The worst constraint violation reported by Gurobi over all previous runs.

• The worst dual violation reported by Gurobi over all previous runs.

• The number of previous experiments.

• Accumulated number of simplex iterations.

• The κ (KappaExact atribute) value for the current optimal basis.

Sample output is shown below:

Added 2 Vars and 1048576 constraints in 19.19 seconds
Errors: 8.65535e-08 0 2.94137e-07 2.77556e-17 Iter 0 10 Kappa 3150.06
Errors: 4.81978e-07 0 3.22359e-07 2.77556e-17 Iter 1 21 Kappa 3009.12
Errors: 4.81978e-07 0 3.4936e-07 1.11022e-16 Iter 2 33 Kappa 2890.58
Errors: 1.53201e-06 0 9.78818e-07 1.11022e-16 Iter 6 79 Kappa 1727.89
Errors: 1.61065e-06 0 8.26005e-07 1.11022e-16 Iter 46 536 Kappa 1880.73
Errors: 1.61065e-06 0 8.84782e-07 1.11022e-16 Iter 52 602 Kappa 1817.27
Errors: 1.61065e-06 0 9.4557e-07 1.11022e-16 Iter 54 625 Kappa 1757.96
Errors: 1.69167e-06 0 9.78818e-07 1.11022e-16 Iter 64 742 Kappa 1727.89
Errors: 1.69167e-06 0 3.8268e-07 1.66533e-16 Iter 88 1022 Kappa 2761.99
Errors: 1.69167e-06 0 9.04817e-07 1.66533e-16 Iter 92 1067 Kappa 1797.06
Errors: 1.69167e-06 0 2.94137e-07 2.22045e-16 Iter 94 1089 Kappa 3150.06
Errors: 1.69167e-06 0 3.29612e-07 2.22045e-16 Iter 95 1101 Kappa 2975.84
Errors: 1.69167e-06 0 3.4936e-07 2.22045e-16 Iter 98 1137 Kappa 2890.58
Errors: 1.69167e-06 0 9.25086e-07 2.22045e-16 Iter 99 1147 Kappa 1777.3
Errors: 1.69167e-06 0 9.78818e-07 2.22045e-16 Iter 107 1237 Kappa 1727.89
Errors: 1.69167e-06 0 9.99895e-07 2.22045e-16 Iter 112 1293 Kappa 1709.61
Errors: 1.84851e-06 0 9.78818e-07 2.22045e-16 Iter 132 1523 Kappa 1727.89
Errors: 1.96603e-06 0 9.99895e-07 2.22045e-16 Iter 134 1545 Kappa 1709.61

Surprisingly the reported errors are rather small. Why is this? There are at least two con-
tributing factors: the model has a bounded feasible region (in this case the range of both variables
is [−1, 1]). In addition, the distance from one extreme point (a point at the intersection of two
neighboring constraints) to its neighbor is also relatively small, so all ε-optimal solutions are close
to each other.

We encourage you to play with this code, perturb some of the input data, and analyze the
results. You will see the discrepancies between the theoretical and the numerical optimal solution
will be comparable to the sizes of the perturbations.

Optimizing over thin regions:

Now we move to our second thought experiment: Consider a feasible region consisting of a triangle
in R2 with a very wide base and very short height, as depicted here:

772

~c 1

~c2

Consider the case where the ratio of the base to the height is on the order of 105, and that we
consider a nominal objective function ~c1 as in the figure.

In theory, the optimal solution should be the apex of the triangle, but assume that we randomly
perturb both the right-hand side and the objective function with terms in the order of 10−6. What
will happen with the numerical solution?

To perform the experiment, we execute the code thinOpt.py, where we perform a series of
re-optimizations with different perturbations as described above. To be more precise, whenever the
new computed solution is further from the mathetical solution by more than it has been in previous
trials, we print:

• The new maximum distance among solutions.

• The current iteration.

• The κ (KappaExact atribute) value for the current optimal basis.

• The bound violation as reported by Gurobi for the current solution.

• The constraint violation as reported by Gurobi for the current solution.

• The dual violation as reported by Gurobi for the current solution.
Sample output is shown below:

New maxdiff 4e+16 Iter 0 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 2 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 7 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 83 Kappa 3.31072 Violations: 0 0 2.64698e-23
New maxdiff 4e+16 Iter 194 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1073 Kappa 3.31072 Violations: 0 1.13687e-13 0
New maxdiff 4e+16 Iter 4981 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 19514 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 47117 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 429955 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 852480 Kappa 3.31072 Violations: 0 0 0

Results look very different from what we saw in our first test. The distance between the
solution to the unperturbed model and the solution to the perturbed one is huge, even from the
very first iteration. Also, the κ values are relatively small, and the reported primal, dual, and
bound violations are almost zero. So, what happened? Note that when we choose ~c1 = (0, 1),
we are choosing an optimal point where a small tilting of the objective function may move us to
another extreme point very far away, and hence the large norm. This is possible because the region
is very large and, in principle, without any bounds, i.e. this is related to the case of ε-optimal
solutions and very long sides.

Again, we encourage you to play with this example. For example, what would happen if the
nominal objective function is ~c2 = (1, 0)?

773

Stability and convergence
The algorithms used to solve linear programming problems are all forced to make an assumption:
that tiny changes to the system (e.g., making a small step in barrier) lead to small changes in the
solution. If this is not true (due to ill-conditioning), then the algorithm may jump around in the
solution space and have a hard time converging.

Finally, one way to improve the geometry of a problem is by suitably scaling variables and con-
straints as explained in the Scaling section, and working with bounded feasible sets with reasonable
ranges for all variables.

24.7 Further reading
• A Characterization of Stability in Linear Programming, Stephen M. Robinson, 1977, Opera-
tions Research 25-3:435–447.

• IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754), IEEE Computer Society,
1985.

• What every computer scientist should know about floating-point arithmetic, David Golberg,
1991, ACM Computing Surveys (CSUR), 23:5–48.

• Numerical Computing with IEEE Floating Point Arithmetic, Michael L. Overton, SIAM, 2001.

• Practical guidelines for solving difficult linear programs, Ed Klotz and Alexandra M. Newman,
2013, Surveys in Operations Research and Management Science, 18-1:1–17.

• Identification, Assesment, and Correction of Ill-Conditioning and Numerical Instability in
Linar and Integer Programs, Ed Klotz, Bridging Data and Decisions, Chapter 3, 54–108.

Source code examples:
Source code for the experiment of optimizing over a circle

from gurobipy import *
from math import *
import random
import time
import sys

Work on a circle defined on a million constraints
t0 = time.time ()
n = 1024 * 1024
m = Model(’Circle Optimization ’)
X = m. addVars (2,lb=-2,ub =2)
Wb = 0
Wc = 0
Wd = 0
maxdiff = 0
niter = 0
margin = 1.01

774

m. addConstrs (X[0]* cos ((2* pi*i)/n) + X[1]* sin ((2* pi*i)/n) <= 1
for i in range(n))

print(’Added 2 Vars and %d constraints in %.2f seconds ’ %
(n, time.time ()-t0))

m. Params . OutputFlag = 0
m. Params . Presolve = 0

Now select random objectives and optimize . Resulting optimal
solution must be in the circle
for i in range (4096):

theta =2* pi* random . random ()
a = cos(theta)
b = sin(theta)
m. setObjective (X[0] * a + X[1] * b)
m. optimize ()
niter += m. IterCount

See how far is the solution from the boundary of a circle of
radius one , if we minimize (a,b) the optimal solution should be (-a,-b)
error = (X[0].X+a)*(X[0].X+a) + (X[1].X+b)*(X[1].X+b)

Display most inacurate solution
if (error > margin * maxdiff or

m. BoundVio > margin * Wb or
m. ConstrVio > margin * Wc or
m. DualVio > margin * Wd):

maxdiff = max(maxdiff , error)
Wb = max(Wb , m. BoundVio)
Wc = max(Wb , m. ConstrVio)
Wd = max(Wd , m. DualVio)
print(’Errors : %g %g %g %g Iter %d %d Kappa %g’ %

(maxdiff , Wb , Wc , Wd , i, niter , m. KappaExact))
sys. stdout .flush ()

Source code for the experiment on a thin feasible region

from gurobipy import *
import random
import sys

Test the effect of small perturbations on the optimal solutions
for a problem with a thin feasible region
rhs = 1e3
m = Model(’Thin line Optimization ’)
x = m. addVar (obj =1)
y = m. addVar (obj =0, lb=-GRB.INFINITY , ub=GRB. INFINITY)
c1 = m. addConstr (1e-5 * y + 1e-0 * x <= rhs)
c2 = m. addConstr (- 1e-5 * y + 1e-0 * x <= rhs)
m. Params . OutputFlag = 0
m. Params . Presolve = 0
m. optimize ()
xval = x.X
yval = y.X
maxdiff = 0
for i in range (1024*1024):

c1.Rhs = rhs + 2e-6 * random . random ()

775

c2.Rhs = rhs + 2e-6 * random . random ()
x.Obj = 1 + 2e-6 * random . random ()
y.Obj = 0 + 2e-6 * random . random ()
m. optimize ()
x2val = x.X
y2val = y.X
error = (xval -x2val)*(xval -x2val) + (yval -y2val)*(yval -y2val)
if error > 1e-5 + maxdiff :

print(’New maxdiff %g Iter %d Kappa %g Violations : %g %g %g’ %
(error , i, m.KappaExact , m.BoundVio , m.ConstrVio ,

m. DualVio))
sys. stdout .flush ()
maxdiff = error

Source code for the experiment with column scalings

import sys
import random
import argparse
from gurobipy import *

Use parameters for greater flexibility
parser = argparse . ArgumentParser (formatter_class = argparse . ArgumentDefaultsHelpFormatter)
parser . add_argument (’-f’,’--infile ’, help=’Problem File ’,

default =None , required =True)
parser . add_argument (’-s’,’--scale ’, help=’Scaling Factor ’,

type=float , default =10000.0)
parser . add_argument (’-w’,’--outfile ’, help=’Save scaled model ’,

default =None)
parser . add_argument (’-o’,’--optimize ’, help=’Optimize scaled problem ’,

type=int , default =1)
args = parser . parse_args ()

Load input problem
m = read(args. infile)

Scale domain of all columns randomly in the given domain
for var in m. getVars ():

if var.vtype == GRB. CONTINUOUS :
scale = random . uniform (args.scale /2.0 , args.scale *2.0)
flip = random . randint (0 ,3)
if flip == 0:

scale = 1.0
elif flip == 1:

scale = 1.0/ scale
col = m. getCol (var)
for i in range(col.size ()):

coeff = col. getCoeff (i)
row = col. getConstr (i)
m. chgCoeff (row , var , coeff*scale)

var.obj = var.obj*scale
if var.lb > -GRB. INFINITY :

var.lb = var.lb/scale
if var.ub < GRB. INFINITY :

var.ub = var.ub/scale

776

if args. outfile != None:
m.write(args. outfile)

Optimize
if args. optimize :

m. optimize ()
if m. Status == GRB. OPTIMAL :

print (’Kappa: %e\n’ % m. KappaExact)

777

	Introduction
	C API Overview
	Environment Creation and Destruction
	GRBloadenv
	GRBemptyenv
	GRBstartenv
	GRBloadclientenv
	GRBloadcloudenv
	GRBfreeenv
	GRBgetconcurrentenv
	GRBgetmultiobjenv
	GRBdiscardconcurrentenvs
	GRBdiscardmultiobjenvs

	Model Creation and Modification
	GRBloadmodel
	GRBnewmodel
	GRBcopymodel
	GRBaddconstr
	GRBaddconstrs
	GRBaddgenconstrXxx
	GRBaddgenconstrMax
	GRBaddgenconstrMin
	GRBaddgenconstrAbs
	GRBaddgenconstrAnd
	GRBaddgenconstrOr
	GRBaddgenconstrIndicator
	GRBaddqconstr
	GRBaddqpterms
	GRBaddrangeconstr
	GRBaddrangeconstrs
	GRBaddsos
	GRBaddvar
	GRBaddvars
	GRBchgcoeffs
	GRBdelconstrs
	GRBdelgenconstrs
	GRBdelq
	GRBdelqconstrs
	GRBdelsos
	GRBdelvars
	GRBsetobjectiven
	GRBsetpwlobj
	GRBupdatemodel
	GRBfreemodel
	GRBXaddconstrs
	GRBXaddrangeconstrs
	GRBXaddvars
	GRBXchgcoeffs
	GRBXloadmodel

	Model Solution
	GRBoptimize
	GRBoptimizeasync
	GRBcomputeIIS
	GRBfeasrelax
	GRBfixedmodel
	GRBreset
	GRBsync

	Model Queries
	GRBgetcoeff
	GRBgetconstrbyname
	GRBgetconstrs
	GRBgetenv
	GRBgetgenconstrMax
	GRBgetgenconstrMin
	GRBgetgenconstrAbs
	GRBgetgenconstrAnd
	GRBgetgenconstrOr
	GRBgetgenconstrIndicator
	GRBgetpwlobj
	GRBgetq
	GRBgetqconstr
	GRBgetsos
	GRBgetvarbyname
	GRBgetvars
	GRBXgetconstrs
	GRBXgetvars

	Input/Output
	GRBreadmodel
	GRBread
	GRBwrite

	Attribute Management
	GRBgetattrinfo
	GRBgetintattr
	GRBsetintattr
	GRBgetintattrelement
	GRBsetintattrelement
	GRBgetintattrarray
	GRBsetintattrarray
	GRBgetintattrlist
	GRBsetintattrlist
	GRBgetdblattr
	GRBsetdblattr
	GRBgetdblattrelement
	GRBsetdblattrelement
	GRBgetdblattrarray
	GRBsetdblattrarray
	GRBgetdblattrlist
	GRBsetdblattrlist
	GRBgetcharattrelement
	GRBsetcharattrelement
	GRBgetcharattrarray
	GRBsetcharattrarray
	GRBgetcharattrlist
	GRBsetcharattrlist
	GRBgetstrattr
	GRBsetstrattr
	GRBgetstrattrelement
	GRBsetstrattrelement
	GRBgetstrattrarray
	GRBsetstrattrarray
	GRBgetstrattrlist
	GRBsetstrattrlist

	Parameter Management and Tuning
	GRBtunemodel
	GRBgettuneresult
	GRBgetdblparam
	GRBgetintparam
	GRBgetstrparam
	GRBsetdblparam
	GRBsetintparam
	GRBsetstrparam
	GRBgetdblparaminfo
	GRBgetintparaminfo
	GRBgetstrparaminfo
	GRBreadparams
	GRBwriteparams

	Monitoring Progress - Logging and Callbacks
	GRBmsg
	GRBsetcallbackfunc
	GRBgetcallbackfunc
	GRBcbget
	GRBversion

	Modifying Solver Behavior - Callbacks
	GRBcbcut
	GRBcblazy
	GRBcbsolution
	GRBterminate

	Error Handling
	GRBgeterrormsg

	Advanced simplex routines
	GRBFSolve
	GRBBSolve
	GRBBinvColj
	GRBBinvRowi
	GRBgetBasisHead

	C++ API Overview
	GRBEnv
	GRBEnv()
	GRBEnv::get()
	GRBEnv::getErrorMsg()
	GRBEnv::getParamInfo()
	GRBEnv::message()
	GRBEnv::readParams()
	GRBEnv::resetParams()
	GRBEnv::set()
	GRBEnv::start()
	GRBEnv::writeParams()

	GRBModel
	GRBModel()
	GRBModel::addConstr()
	GRBModel::addConstrs()
	GRBModel::addGenConstrXxx()
	GRBModel::addQConstr()
	GRBModel::addRange()
	GRBModel::addRanges()
	GRBModel::addSOS()
	GRBModel::addVar()
	GRBModel::addVars()
	GRBModel::chgCoeff()
	GRBModel::chgCoeffs()
	GRBModel::computeIIS()
	GRBModel::discardConcurrentEnvs()
	GRBModel::discardMultiobjEnvs()
	GRBModel::feasRelax()
	GRBModel::fixedModel()
	GRBModel::get()
	GRBModel::getCoeff()
	GRBModel::getCol()
	GRBModel::getConcurrentEnv()
	GRBModel::getConstrByName()
	GRBModel::getConstrs()
	GRBModel::getEnv()
	GRBModel::getGenConstrMax()
	GRBModel::getGenConstrMin()
	GRBModel::getGenConstrAbs()
	GRBModel::getGenConstrAnd()
	GRBModel::getGenConstrOr()
	GRBModel::getGenConstrIndicator()
	GRBModel::getGenConstrs()
	GRBModel::getMultiobjEnv()
	GRBModel::getObjective()
	GRBModel::getPWLObj()
	GRBModel::getQCRow()
	GRBModel::getQConstrs()
	GRBModel::getRow()
	GRBModel::getSOS()
	GRBModel::getSOSs()
	GRBModel::getTuneResult()
	GRBModel::getVarByName()
	GRBModel::getVars()
	GRBModel::optimize()
	GRBModel::optimizeasync()
	GRBModel::presolve()
	GRBModel::read()
	GRBModel::remove()
	GRBModel::reset()
	GRBModel::setCallback()
	GRBModel::set()
	GRBModel::setObjective()
	GRBModel.setObjectiveN()
	GRBModel::setPWLObj()
	GRBModel::sync()
	GRBModel::terminate()
	GRBModel::tune()
	GRBModel::update()
	GRBModel::write()

	GRBVar
	GRBVar::get()
	GRBVar::sameAs()
	GRBVar::set()

	GRBConstr
	GRBConstr::get()
	GRBConstr::sameAs()
	GRBConstr::set()

	GRBQConstr
	GRBQConstr::get()
	GRBQConstr::set()

	GRBSOS
	GRBSOS::get()

	GRBGenConstr
	GRBGenConstr::get()
	GRBGenConstr::set()

	GRBExpr
	GRBExpr::getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr::addTerms()
	GRBLinExpr::clear()
	GRBLinExpr::getConstant()
	GRBLinExpr::getCoeff()
	GRBLinExpr::getValue()
	GRBLinExpr::getVar()
	GRBLinExpr::operator=
	GRBLinExpr::operator+
	GRBLinExpr::operator-
	GRBLinExpr::operator+=
	GRBLinExpr::operator-=
	GRBLinExpr::operator*=
	GRBLinExpr::remove()
	GRBLinExpr::size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr::addTerm()
	GRBQuadExpr::addTerms()
	GRBQuadExpr::clear()
	GRBQuadExpr::getCoeff()
	GRBQuadExpr::getLinExpr()
	GRBQuadExpr::getValue()
	GRBQuadExpr::getVar1()
	GRBQuadExpr::getVar2()
	GRBQuadExpr::operator=
	GRBQuadExpr::operator+
	GRBQuadExpr::operator-
	GRBQuadExpr::operator+=
	GRBQuadExpr::operator-=
	GRBQuadExpr::operator*=
	GRBQuadExpr::remove()
	GRBQuadExpr::size()

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn::addTerm()
	GRBColumn::addTerms()
	GRBColumn::clear()
	GRBColumn::getCoeff()
	GRBColumn::getConstr()
	GRBColumn::remove()
	GRBColumn::size()

	GRBCallback
	GRBCallback()
	GRBCallback::abort()
	GRBCallback::addCut()
	GRBCallback::addLazy()
	GRBCallback::getDoubleInfo()
	GRBCallback::getIntInfo()
	GRBCallback::getNodeRel()
	GRBCallback::getSolution()
	GRBCallback::getStringInfo()
	GRBCallback::setSolution()
	GRBCallback::useSolution()

	GRBException
	GRBException()
	GRBException::getErrorCode()
	GRBException::getMessage()

	Non-Member Functions
	operator==
	operator<=
	operator>=
	operator+
	operator-
	operator*
	operator/

	Attribute Enums
	GRB_CharAttr
	GRB_DoubleAttr
	GRB_IntAttr
	GRB_StringAttr

	Parameter Enums
	GRB_DoubleParam
	GRB_IntParam
	GRB_StringParam

	Java API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.dispose()
	GRBEnv.get()
	GRBEnv.getErrorMsg()
	GRBEnv.getParamInfo()
	GRBEnv.message()
	GRBEnv.readParams()
	GRBEnv.release()
	GRBEnv.resetParams()
	GRBEnv.set()
	GRBEnv.start()
	GRBEnv.writeParams()

	GRBModel
	GRBModel()
	GRBModel.addConstr()
	GRBModel.addConstrs()
	GRBModel.addGenConstrXxx()
	GRBModel.addQConstr()
	GRBModel.addRange()
	GRBModel.addRanges()
	GRBModel.addSOS()
	GRBModel.addVar()
	GRBModel.addVars()
	GRBModel.chgCoeff()
	GRBModel.chgCoeffs()
	GRBModel.computeIIS()
	GRBModel.discardConcurrentEnvs()
	GRBModel.discardMultiobjEnvs()
	GRBModel.dispose()
	GRBModel.feasRelax()
	GRBModel.fixedModel()
	GRBModel.get()
	GRBModel.getCoeff()
	GRBModel.getCol()
	GRBModel.getConcurrentEnv()
	GRBModel.getConstrByName()
	GRBModel.getConstrs()
	GRBModel.getEnv()
	GRBModel.getGenConstrMax()
	GRBModel.getGenConstrMin()
	GRBModel.getGenConstrAbs()
	GRBModel.getGenConstrAnd()
	GRBModel.getGenConstrOr()
	GRBModel.getGenConstrIndicator()
	GRBModel.getGenConstrs()
	GRBModel.getMultiobjEnv()
	GRBModel.getObjective()
	GRBModel.getPWLObj()
	GRBModel.getQCRow()
	GRBModel.getQConstrs()
	GRBModel.getRow()
	GRBModel.getSOS()
	GRBModel.getSOSs()
	GRBModel.getTuneResult()
	GRBModel.getVarByName()
	GRBModel.getVars()
	GRBModel.optimize()
	GRBModel.optimizeasync()
	GRBModel.presolve()
	GRBModel.read()
	GRBModel.remove()
	GRBModel.reset()
	GRBModel.setCallback()
	GRBModel.set()
	GRBModel.setObjective()
	GRBModel.setObjectiveN()
	GRBModel.setPWLObj()
	GRBModel.sync()
	GRBModel.terminate()
	GRBModel.tune()
	GRBModel.update()
	GRBModel.write()

	GRBVar
	GRBVar.get()
	GRBVar.sameAs()
	GRBVar.set()

	GRBConstr
	GRBConstr.get()
	GRBConstr.sameAs()
	GRBConstr.set()

	GRBQConstr
	GRBQConstr.get()
	GRBQConstr.set()

	GRBSOS
	GRBSOS.get()

	GRBGenConstr
	GRBGenConstr.get()
	GRBGenConstr.set()

	GRBExpr
	GRBExpr.getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.add()
	GRBLinExpr.addConstant()
	GRBLinExpr.addTerm()
	GRBLinExpr.addTerms()
	GRBLinExpr.clear()
	GRBLinExpr.getConstant()
	GRBLinExpr.getCoeff()
	GRBLinExpr.getValue()
	GRBLinExpr.getVar()
	GRBLinExpr.multAdd()
	GRBLinExpr.remove()
	GRBLinExpr.size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.add()
	GRBQuadExpr.addConstant()
	GRBQuadExpr.addTerm()
	GRBQuadExpr.addTerms()
	GRBQuadExpr.clear()
	GRBQuadExpr.getCoeff()
	GRBQuadExpr.getLinExpr()
	GRBQuadExpr.getValue()
	GRBQuadExpr.getVar1()
	GRBQuadExpr.getVar2()
	GRBQuadExpr.multAdd()
	GRBQuadExpr.remove()
	GRBQuadExpr.size()

	GRBColumn
	GRBColumn()
	GRBColumn.addTerm()
	GRBColumn.addTerms()
	GRBColumn.clear()
	GRBColumn.getCoeff()
	GRBColumn.getConstr()
	GRBColumn.remove()
	GRBColumn.size()

	GRBCallback
	GRBCallback()
	GRBCallback.abort()
	GRBCallback.addCut()
	GRBCallback.addLazy()
	GRBCallback.getDoubleInfo()
	GRBCallback.getIntInfo()
	GRBCallback.getNodeRel()
	GRBCallback.getSolution()
	GRBCallback.getStringInfo()
	GRBCallback.setSolution()
	GRBCallback.useSolution()

	GRBException
	GRBException()
	GRBException.getErrorCode()

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	.NET API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.Dispose()
	GRBEnv.ErrorMsg
	GRBEnv.Get()
	GRBEnv.GetParamInfo()
	GRBEnv.Message()
	GRBEnv.ReadParams()
	GRBEnv.Release()
	GRBEnv.ResetParams()
	GRBEnv.Set()
	GRBEnv.Start()
	GRBEnv.WriteParams()

	GRBModel
	GRBModel()
	GRBModel.AddConstr()
	GRBModel.AddConstrs()
	GRBModel.AddGenConstrXxx()
	GRBModel.AddQConstr()
	GRBModel.AddRange()
	GRBModel.AddRanges()
	GRBModel.AddSOS()
	GRBModel.AddVar()
	GRBModel.AddVars()
	GRBModel.ChgCoeff()
	GRBModel.ChgCoeffs()
	GRBModel.ComputeIIS()
	GRBModel.DiscardConcurrentEnvs()
	GRBModel.DiscardMultiobjEnvs()
	GRBModel.Dispose()
	GRBModel.FeasRelax()
	GRBModel.FixedModel()
	GRBModel.Get()
	GRBModel.GetCoeff()
	GRBModel.GetCol()
	GRBModel.GetConcurrentEnv()
	GRBModel.GetConstrByName()
	GRBModel.GetConstrs()
	GRBModel.GetEnv()
	GRBModel.GetGenConstrMax()
	GRBModel.GetGenConstrMin()
	GRBModel.GetGenConstrAbs()
	GRBModel.GetGenConstrAnd()
	GRBModel.GetGenConstrOr()
	GRBModel.GetGenConstrIndicator()
	GRBModel.GetGenConstrs()
	GRBModel.GetMultiobjEnv()
	GRBModel.GetObjective()
	GRBModel.GetPWLObj()
	GRBModel.GetQConstr()
	GRBModel.GetQConstrs()
	GRBModel.GetQCRow()
	GRBModel.GetRow()
	GRBModel.GetSOS()
	GRBModel.GetSOSs()
	GRBModel.GetTuneResult()
	GRBModel.GetVarByName()
	GRBModel.GetVars()
	GRBModel.Optimize()
	GRBModel::OptimizeAsync()
	GRBModel.Presolve()
	GRBModel.Read()
	GRBModel.Remove()
	GRBModel.Reset()
	GRBModel.SetCallback()
	GRBModel.Set()
	GRBModel.SetObjective()
	GRBModel.SetObjectiveN()
	GRBModel.SetPWLObj()
	GRBModel.Terminate()
	GRBModel.Tune()
	GRBModel.Update()
	GRBModel.Write()

	GRBVar
	GRBVar.Get()
	GRBVar.SameAs()
	GRBVar.Set()

	GRBConstr
	GRBConstr.Get()
	GRBConstr.SameAs()
	GRBConstr.Set()

	GRBQConstr
	GRBQConstr.Get()
	GRBQConstr.Set()

	GRBSOS
	GRBSOS.Get()

	GRBGenConstr
	GRBGenConstr.Get()
	GRBGenConstr.Set()

	GRBExpr
	GRBExpr.Value

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.Add()
	GRBLinExpr.AddConstant()
	GRBLinExpr.AddTerm()
	GRBLinExpr.AddTerms()
	GRBLinExpr.Clear()
	GRBLinExpr.Constant
	GRBLinExpr.GetCoeff()
	GRBLinExpr.GetVar()
	GRBLinExpr.MultAdd()
	GRBLinExpr.Remove()
	GRBLinExpr.Size
	GRBLinExpr.Value

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.Add()
	GRBQuadExpr.AddConstant()
	GRBQuadExpr.AddTerm()
	GRBQuadExpr.AddTerms()
	GRBQuadExpr.Clear()
	GRBQuadExpr.GetCoeff()
	GRBQuadExpr.GetVar1()
	GRBQuadExpr.GetVar2()
	GRBQuadExpr.LinExpr()
	GRBQuadExpr.MultAdd()
	GRBQuadExpr.Remove()
	GRBQuadExpr.Size
	GRBQuadExpr.Value

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn.AddTerm()
	GRBColumn.AddTerms()
	GRBColumn.Clear()
	GRBColumn.GetCoeff()
	GRBColumn.GetConstr()
	GRBColumn.Remove()
	GRBColumn.Size

	Overloaded Operators
	operator <=
	operator >=
	operator ==
	operator +
	operator -
	operator *
	operator /
	implicit cast

	GRBCallback
	GRBCallback()
	GRBCallback.Abort()
	GRBCallback.AddCut()
	GRBCallback.AddLazy()
	GRBCallback.GetDoubleInfo()
	GRBCallback.GetIntInfo()
	GRBCallback.GetNodeRel()
	GRBCallback.GetSolution()
	GRBCallback.GetStringInfo()
	GRBCallback.SetSolution()
	GRBCallback.UseSolution()

	GRBException
	GRBException()
	GRBException.ErrorCode

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	Python API Overview
	Global Functions
	models()
	disposeDefaultEnv()
	multidict()
	paramHelp()
	quicksum()
	read()
	readParams()
	resetParams()
	setParam()
	system()
	writeParams()

	Model
	Model()
	Model.addConstr()
	Model.addConstrs()
	Model.addGenConstrXxx()
	Model.addGenConstrMax()
	Model.addGenConstrMin()
	Model.addGenConstrAbs()
	Model.addGenConstrAnd()
	Model.addGenConstrOr()
	Model.addGenConstrIndicator()
	Model.addLConstr()
	Model.addQConstr()
	Model.addRange()
	Model.addSOS()
	Model.addVar()
	Model.addVars()
	Model.cbCut()
	Model.cbGet()
	Model.cbGetNodeRel()
	Model.cbGetSolution()
	Model.cbLazy()
	Model.cbSetSolution()
	Model.cbUseSolution()
	Model.chgCoeff()
	Model.computeIIS()
	Model.copy()
	Model.discardConcurrentEnvs()
	Model.discardMultiobjEnvs()
	Model.feasRelaxS()
	Model.feasRelax()
	Model.fixed()
	Model.getAttr()
	Model.getCoeff()
	Model.getCol()
	Model.getConcurrentEnv()
	Model.getConstrByName()
	Model.getConstrs()
	Model.getGenConstrMax()
	Model.getGenConstrMin()
	Model.getGenConstrAbs()
	Model.getGenConstrAnd()
	Model.getGenConstrOr()
	Model.getGenConstrIndicator()
	Model.getGenConstrs()
	Model.getMultiobjEnv()
	Model.getObjective()
	Model.getParamInfo()
	Model.getPWLObj()
	Model.getQConstrs()
	Model.getQCRow()
	Model.getRow()
	Model.getSOS()
	Model.getSOSs()
	Model.getTuneResult()
	Model.getVarByName()
	Model.getVars()
	Model.message()
	Model.optimize()
	Model.presolve()
	Model.printAttr()
	Model.printQuality()
	Model.printStats()
	Model.read()
	Model.relax()
	Model.remove()
	Model.reset()
	Model.resetParams()
	Model.setAttr()
	Model.setObjective()
	Model.setObjectiveN()
	Model.setPWLObj()
	Model.setParam()
	Model.terminate()
	Model.tune()
	Model.update()
	Model.write()

	Var
	Var.getAttr()
	Var.sameAs()
	Var.setAttr()

	Constr
	Constr.getAttr()
	Constr.sameAs()
	Constr.setAttr()

	QConstr
	QConstr.getAttr()
	QConstr.setAttr()

	SOS
	SOS.getAttr()

	GenConstr
	GenConstr.getAttr()
	GenConstr.setAttr()

	LinExpr
	LinExpr()
	LinExpr.add()
	LinExpr.addConstant()
	LinExpr.addTerms()
	LinExpr.clear()
	LinExpr.copy()
	LinExpr.getConstant()
	LinExpr.getCoeff()
	LinExpr.getValue()
	LinExpr.getVar()
	LinExpr.remove()
	LinExpr.size()
	LinExpr.__eq__()
	LinExpr.__le__()
	LinExpr.__ge__()

	QuadExpr
	QuadExpr()
	QuadExpr.add()
	QuadExpr.addConstant()
	QuadExpr.addTerms()
	QuadExpr.clear()
	QuadExpr.copy()
	QuadExpr.getCoeff()
	QuadExpr.getLinExpr()
	QuadExpr.getValue()
	QuadExpr.getVar1()
	QuadExpr.getVar2()
	QuadExpr.remove()
	QuadExpr.size()
	QuadExpr.__eq__()
	QuadExpr.__le__()
	QuadExpr.__ge__()

	GenExpr
	TempConstr
	Column
	Column()
	Column.addTerms()
	Column.clear()
	Column.copy()
	Column.getCoeff()
	Column.getConstr()
	Column.remove()
	Column.size()

	Callbacks
	GurobiError
	Env
	Env()
	Env.ClientEnv()
	Env.CloudEnv()
	Env.resetParams()
	Env.setParam()
	Env.start()
	Env.writeParams()

	GRB
	Constants
	GRB.Attr
	GRB.Param

	tuplelist
	tuplelist()
	tuplelist.select()
	tuplelist.clean()
	tuplelist.__contains__()

	tupledict
	tupledict()
	tupledict.select()
	tupledict.sum()
	tupledict.prod()
	tupledict.clean()

	General Constraint Helper Functions
	abs_()
	and_()
	max_()
	min_()
	or_()

	MATLAB API Overview
	Common Arguments
	The model argument
	The params argument
	The env argument

	Solving a Model
	gurobi()
	gurobi_iis()
	gurobi_feasrelax()
	gurobi_relax()

	Input/Output
	gurobi_read()
	gurobi_write()

	Using Gurobi within MATLAB's Problem-Based Optimization
	Setting up the Gurobi MATLAB interface

	R API Overview
	Common Arguments
	The model argument
	The params argument
	The env argument

	Solving a Model
	gurobi()
	gurobi_iis()
	gurobi_feasrelax()
	gurobi_relax()

	Input/Output
	gurobi_read()
	gurobi_write()

	Installing the R package

	Variables and Constraints
	Variables
	Constraints
	Tolerances and Ill Conditioning - A Caveat

	Attributes
	Model Attributes
	NumConstrs
	NumVars
	NumSOS
	NumQConstrs
	NumGenConstrs
	NumNZs
	DNumNZs
	NumQNZs
	NumQCNZs
	NumIntVars
	NumBinVars
	NumPWLObjVars
	ModelName
	ModelSense
	ObjCon
	ObjVal
	ObjBound
	ObjBoundC
	PoolObjBound
	PoolObjVal
	MIPGap
	Runtime
	Status
	SolCount
	IterCount
	BarIterCount
	NodeCount
	IsMIP
	IsQP
	IsQCP
	IsMultiObj
	IISMinimal
	MaxCoeff
	MinCoeff
	MaxBound
	MinBound
	MaxObjCoeff
	MinObjCoeff
	MaxRHS
	MinRHS
	MaxQCCoeff
	MinQCCoeff
	MaxQCLCoeff
	MinQCLCoeff
	MaxQCRHS
	MinQCRHS
	MaxQObjCoeff
	MinQObjCoeff
	Kappa
	KappaExact
	FarkasProof
	TuneResultCount
	NumStart
	LicenseExpiration
	JobID
	Server

	Variable Attributes
	LB
	UB
	Obj
	VType
	VarName
	X
	Xn
	RC
	BarX
	Start
	VarHintVal
	VarHintPri
	BranchPriority
	Partition
	VBasis
	PStart
	IISLB
	IISUB
	PWLObjCvx
	SAObjLow
	SAObjUp
	SALBLow
	SALBUp
	SAUBLow
	SAUBUp
	UnbdRay

	Linear Constraint Attributes
	Sense
	RHS
	ConstrName
	Pi
	Slack
	CBasis
	DStart
	Lazy
	IISConstr
	SARHSLow
	SARHSUp
	FarkasDual

	SOS Attributes
	IISSOS

	Quadratic Constraint Attributes
	QCSense
	QCRHS
	QCName
	QCPi
	QCSlack
	IISQConstr

	General Constraint Attributes
	GenConstrType
	GenConstrName
	IISGenConstr

	Quality Attributes
	BoundVio
	BoundSVio
	BoundVioIndex
	BoundSVioIndex
	BoundVioSum
	BoundSVioSum
	ConstrVio
	ConstrSVio
	ConstrVioIndex
	ConstrSVioIndex
	ConstrVioSum
	ConstrSVioSum
	ConstrResidual
	ConstrSResidual
	ConstrResidualIndex
	ConstrSResidualIndex
	ConstrResidualSum
	ConstrSResidualSum
	DualVio
	DualSVio
	DualVioIndex
	DualSVioIndex
	DualVioSum
	DualSVioSum
	DualResidual
	DualSResidual
	DualResidualIndex
	DualSResidualIndex
	DualResidualSum
	DualSResidualSum
	ComplVio
	ComplVioIndex
	ComplVioSum
	IntVio
	IntVioIndex
	IntVioSum

	Multi-objective Attributes
	ObjN
	ObjNCon
	ObjNPriority
	ObjNWeight
	ObjNRelTol
	ObjNAbsTol
	ObjNVal
	ObjNName
	NumObj

	Attribute Examples
	C Attribute Examples
	C++ Attribute Examples
	C# Attribute Examples
	Java Attribute Examples
	Python Attribute Examples
	Visual Basic Attribute Examples

	Parameters
	Parameter Guidelines
	Continuous Models
	MIP Models

	Parameter Descriptions
	AggFill
	Aggregate
	BarConvTol
	BarCorrectors
	BarHomogeneous
	BarOrder
	BarQCPConvTol
	BarIterLimit
	BestBdStop
	BestObjStop
	BranchDir
	DegenMoves
	CliqueCuts
	CloudAccessID
	CloudSecretKey
	CloudPool
	ComputeServer
	ConcurrentJobs
	ConcurrentMIP
	ConcurrentSettings
	CoverCuts
	Crossover
	CrossoverBasis
	CSIdleTimeout
	CSPriority
	CSRouter
	CSTLSInsecure
	Cutoff
	CutAggPasses
	CutPasses
	Cuts
	Disconnected
	DisplayInterval
	DistributedMIPJobs
	DualReductions
	FeasibilityTol
	FeasRelaxBigM
	FlowCoverCuts
	FlowPathCuts
	GomoryPasses
	GUBCoverCuts
	Heuristics
	IISMethod
	ImpliedCuts
	ImproveStartGap
	ImproveStartNodes
	ImproveStartTime
	InfProofCuts
	InfUnbdInfo
	InputFile
	IntFeasTol
	IterationLimit
	LazyConstraints
	LogFile
	LogToConsole
	MarkowitzTol
	Method
	MinRelNodes
	MIPFocus
	MIPGap
	MIPGapAbs
	MIPSepCuts
	MIQCPMethod
	MIRCuts
	ModKCuts
	MultiObjMethod
	MultiObjPre
	NetworkCuts
	NodefileDir
	NodefileStart
	NodeLimit
	NodeMethod
	IgnoreNames
	NormAdjust
	NumericFocus
	ObjScale
	OptimalityTol
	ObjNumber
	OutputFlag
	PartitionPlace
	PerturbValue
	PoolGap
	PoolSearchMode
	PoolSolutions
	PreCrush
	PreDepRow
	PreDual
	PreMIQCPForm
	PrePasses
	PreQLinearize
	Presolve
	PreSOS1BigM
	PreSOS2BigM
	PreSparsify
	ProjImpliedCuts
	PSDTol
	PumpPasses
	QCPDual
	Quad
	Record
	ResultFile
	RINS
	ScaleFlag
	Seed
	ServerPassword
	ServerTimeout
	Sifting
	SiftMethod
	SimplexPricing
	SolutionLimit
	SolutionNumber
	StartNodeLimit
	StartNumber
	StrongCGCuts
	SubMIPCuts
	SubMIPNodes
	Symmetry
	Threads
	TimeLimit
	TokenServer
	TSPort
	TuneCriterion
	TuneJobs
	TuneOutput
	TuneResults
	TuneTimeLimit
	TuneTrials
	UpdateMode
	VarBranch
	WorkerPassword
	WorkerPool
	ZeroHalfCuts
	ZeroObjNodes

	Parameter Examples
	C Parameter Examples
	C++ Parameter Examples
	C# Parameter Examples
	Java Parameter Examples
	MATLAB Parameter Examples
	Python Parameter Examples
	R Parameter Examples
	Visual Basic Parameter Examples

	Empty Environment

	Optimization Status Codes
	Callback Codes
	Error Codes
	Model File Formats
	MPS format
	REW format
	LP format
	RLP format
	ILP format
	OPB format
	MST format
	HNT format
	ORD format
	BAS format
	SOL format
	PRM format

	Logging
	Simplex Logging
	Barrier Logging
	Sifting Logging
	MIP Logging
	Multi-Objective Logging
	Distributed MIP Logging

	Gurobi Command-Line Tool
	Solving a Model
	Replaying Recording Files

	Solution Pool
	Finding Multiple Solutions
	Examples
	Retrieving Solutions
	Subtleties and Limitations

	Multiple Objectives
	Specifying Multiple Objectives
	Working With Multiple Objective
	Additional Details

	Recording API Calls
	Recording
	Replay
	Limitations

	Concurrent Optimizer
	Parameter Tuning Tool
	Command-Line Tuning
	Tuning API

	Gurobi Instant Cloud
	Client Setup
	Instant Cloud Setup
	Copyright Notice for 3rd Party Libraries

	Gurobi Guidelines for Numerical Issues
	Avoid rounding of input
	Real numbers are not real
	Tolerances and user-scaling
	Gurobi tolerances and the limitations of double-precision arithmetic
	Why scaling and geometry is relevant
	Recommended ranges for variables and constraints
	Improving ranges for variables and constraints
	Advanced user scaling
	Avoid hiding large coefficients
	Dealing with big-M constraints

	Does my model have numerical issues?
	Solver parameters to manage numerical issues
	Presolve
	Choosing the right algorithm
	Making the algorithm less sensitive

	Instability and the geometry of optimization problems
	The case of linear systems:
	The geometry of linear optimization problems
	Multiple optimal solutions
	Dealing with epsilon-optimal solutions
	Thin feasible regions
	Optimizing over the circle:
	Optimizing over thin regions:
	Stability and convergence

	Further reading
	Source code for the experiment of optimizing over a circle
	Source code for the experiment on a thin feasible region
	Source code for the experiment with column scalings

